Optimization by a quantum reinforcement algorithm
نویسنده
چکیده
Abstract A reinforcement algorithm solves a classical optimization problem by introducing a feedback to the system which slowly changes the energy landscape and converges the algorithm to an optimal solution in the configuration space. Here, we use this strategy to concentrate (localize) the wave function of a quantum particle, which explores the configuration space of the problem, preferentially on an optimal configuration. We examine the method by solving numerically the equations governing the evolution of the system, which are similar to the nonlinear Schrdinger equations, for small problem sizes. In particular, we observe that reinforcement increases the minimal energy gap of the system in a quantum annealing algorithm. Our numerical simulations and the latter observation show that such kind of quantum feedbacks might be helpful in solving a computationally hard optimization problem by a quantum reinforcement algorithm.
منابع مشابه
BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملQUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملTaking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
In this work we introduce the application of black-box quantum control as an interesting reinforcement learning problem to the machine learning community. We analyze the structure of the reinforcement learning problems arising in quantum physics and argue that agents parameterized by long short-term memory (LSTM) networks trained via stochastic policy gradients yield a general method to solving...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.04262 شماره
صفحات -
تاریخ انتشار 2017